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Abstract. A numerical method for designing reflector surfaces that produce a specified 
far-field over a given solid angle When illuminated by an isotropic source is presented. The 
technique, which uses the geometrical optics approximation, requires the solution of a 
particular non-linear, elliptic partial differential equation, previously derived by the 
authors. The equation is solved iteratively by applying a finite difference model to a 
linearized form. Examples of some generated reflector surfaces are given showing the 
existence of two distinct solutions for each case. The method is applicable to problems in 
microwave antenna design, optics and acoustics. 

1. Introduction 

The geometrical optics approximation has been used extensively in the past twenty-five 
years in microwave design applications to synthesize reflector surfaces that produce a 
desired beam shape when illuminated by a particular primary feed. 

Early beam-shaping techniques were directed towards producing shaped beams for 
search radar antennae (Dunbar 1948) and later work has mainly been concerned with 
shaping the reflecting surfaces of Cassegrain antennae in order to optimize performance 
(Galindo 1964). However, up until recently the function describing the beam shape has 
been required to be of only one variable. The advent of communications satellites has 
underlined the need for a more flexible design method, since in order to illuminate 
irregular regions of the earth efficiently, the satellite antenna must produce an appro- 
priate beam shape to prevent ‘spillover’ into neighbouring regions (Millington 1975). 

In a recent paper (Westcott and Norris 1975) the authors have laid the theoretical 
foundations of a method by which reflector surfaces are generated under the geometri- 
cal optics approximation, capable of producing a far-field specified as a function 
of two variables. The governing partial differential equations derived from the 
principle of energy conservation and the geometrical law of reflection can be either 
elliptic or hyperbolic. 

Theoretical analysis and the subsequent computation of reflector surfaces in the 
hyperbolic case have been described in a parallel series of papers (Brickell and Westcott 
1976, Westcott and Brickell 1976), where the problem is formulated as an initial-value 
problem. 

I Formerly with the Department of Mathematics, University of Southampton. 
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In this paper we consider the elliptic case only and indicate a numerical method 
which we have used successfully to generate reflector surfaces. The elliptical form of 
the equations is presented, for convenience, in 0 2. It is shown that the reflector surface 
is realized by the solution of a non-linear second-order partial differential equation 
which is subjected to certain linear and non-linear boundary conditions. The non- 
linear equations are linearized for local perturbations in 0 3  and a finite difference 
method for their solution is presented in § 4. Section 5 contains some computed results 
corresponding to two distinct far-field models. Our conclusions are given in § 6.  

2. Design equations 

It has been shown (Norris and Westcott 1974, Westcott and Norris 1975) that in order 
to synthesize a reflector surface fed from a point source and capable of giving a desired 
generalized far-field, a particular non-linear partial differential equation of the Monge- 
Ampbre type must be solved. The geometry of the problem is shown in figure 1 and the 
relevant equations are included here for reference. 

Re 

Figure 1. Geometry 

The required far-field power density function G(8, 4) ,  which is essentially finite and 
positive, is defined on the surface of a sphere centred at the source point 0, the origin 
for spherical polar coordinates. The primary source is considered to have a power 
density function I(@’, 4’) also defined on the surface of a sphere centre 0 but with the 
primed coordinate system tilted relative to the unprimed coordinates by a negative 
rotation t,b about the common Oy axis. The angle will be known as the feed tilt angle. 
The boundary rf of the defined far-field lieson a 8-constant circle, namely 8 = Of and the 
reflector surface is bounded by the surface of the cone e’= 0:. Westcott and Norris 
(1975, to be referred to as I), show that the reflector surface r(8,4), referred to the 
far-field coordinates, is given by 

r(e ,  4 )  =texp[u(8,4)](1 +uz+ui/sin2 e). 

U@@++ - u& = 

o s  e s er, Os4s29r, 

(1) 

( 2 )  

u is given by the solution of the second-order partial differential equation 

+ 2 b ~ e +  + cud+ + d + eD(8,& e’, # I ) ,  

in the region 
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where 

and a, b, c, d and e are explicit functions of r e ,  cr4 and 0 given by (22) of I. 
Equation (2) is the elliptic form of the general equation and requires boundary 

conditions defined over a closed region of the far-field for its solution. In this paper two 
simplifications are made in order to facilitate its solution. The first is that the source is 
considered to radiate isotropically over the solid angle defined by the reflector surface, 
thus I = I,,, a constant over 8: C 8’s IT, 0 C d f  c 2 ~ .  The second simplification requires 
that G, and hence D, is an even function about the Ox axis, implying that D(e,4)  = 
D(0, -4). (2) may then be solved under the following boundary conditions: 

(i) G(8,4)  = Kg(4  41, (4) 

where 
2- 

K = 2d,,(l  +cos e,)( lo Joe‘ g(8,4) sin 8 dB d4)-’, 

and g(0, #) is the required far-field specified to within an arbitrary multiplier. (4) arises 
from requiring energy conservation between the reflector solid angle, defined by 
0: c 8’ c IT, 0 c 4’ s  IT and the corresponding far-field solid angle 0 =Z 8 C Bf, 0 s 4 d 
2 IT. 

(ii) The non-linear boundary equation 

Aag + Bu$+ Ccr, +Der+ +E = 0, ( 5 )  

where A, B, C, D and E are functions of e’, 8, q5 and 4, and are given in equations (28) of 
I. ( 5 )  applies for the boundary points 

a = er, Os4s2IT, 

e’ = e:, O s  # f  c 21T. 

This condition ensures that points on the far-field boundary are illuminated by points on 
the reflector boundary. 

(iii) c4(e,  0) = ud(e, IT) = o for all e in (0, Of), (6) 

(iv) ue(er, o)=cot1(ef+t,we:), (7) 

which follows from the even azimuthal symmetry of G. 

is the ‘mapping directive’ equation. When the upper sign is assumed an edge ray links 
the ‘top’ of the reflector with the ‘top’ of the far-field and for the lower sign the ‘top’ of 
the reflector is linked by an edge ray to the ‘bottom’ of the far-field. (7) is in fact derived 
directly from equations ( 5 )  and (6) in I but must be specifically included in order to 
resolve the ambiguity in sign. 

(v, f f ( O ,  4) = 0 (8) 

which assigns a reference level to U ( @ ,  #) without which it is only determined to within 
an arbitrary constant. 
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3. Linearization 

The solution of (2), under the boundary conditions given by equations (4) to (8), may be 
obtained by linearizing the non-linear equations under the assumption of an approxi- 
mate solution, and then applying a finite difference model to the linearized form. A 
system of linear simultaneous equations results, which on solution, should yield a better 
approximation to u. By repetition of the process convergence to any required accuracy 
may be obtained. The availability of computer programs that rapidly invert the large 
sparse matrices obtained by this method make this approach attractive. 

The linearization procedure is most simply described by representing the non-linear 
equations in operator form, 

P(F) = 0 (9) 

P(u - C O  + (To) = 0, (10) 

therefore 

and if uo is a close approximation to the solution of equation (9), then (10) may be 
expanded to 

P(u) = P(ao) + Pf(u0)((7 - uo) + €1, (11) 

where P’(uo) is the FrCchet derivative of P at uo and c1 contains terms of higer order in 
(u-uo). See, for example, Rall (1969). 

Defining u1 by the relation 

Pf(~o0)(u1 - g o )  = P’(uo)(u - u o )  + €1, (12) 

it is seen that (1 1) may be rewritten in the form 

Pbo) +Pf(u0)(u1-uo) = 0, (13) 

which is a linear equation in ul, and providing c1 is sufficiently small, ul will be a better 
approximation to u than go. (12) implies that 

(14) 

where A u  = u1 - uo, and is in a convenient form for the linearization of equations (2) 
and (5 ) .  

P(uJ - O(Ad)  = 0, 

By rewriting (13) in the following form: 

(21 = P o  - [P’(uo)l-lp(~o), 
where [P’(uo)]-’ is the inversion of the linear operator P’(uo), it is seen that a direct 
comparison can be made with Newton’s iterative equation for finding successive 
approximations to a root of f ( x )  = 0, namely 

xk+l = x k  -[f(xk)/f’(xk>] 

where x k  denotes the values from the kth iteration. 
It is a simple but tedious matter to linearize equation (2) under equation (14). 

Explicitly, u is replaced with uo + Au in equation (2), thus obtaining P(uo + Au).  Then, 
ignoring terms of O(Au”), n > 1, and replacing A u  with u1 -go, the final linearized 
form may be obtained. As an example, consider the Monge-Ampsre term 

2 Pm = ffegd.4 - 
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(T is replaced by uo + Au, which on multiplication yields 

P?' =U:&,++ Air@&&+ A u ~ ~ u ~ ~ - ( u ~ ~ ) ~ - ~ A u ~ , u ~ ~ + O ( A U ~ ) .  

Replacing Au with u1 -uo the linearized form Pml is obtained: 

The final linearized form of (2) may be written as 

where k refers to the values from the kth iteration and a1 . . . f f6  are given in the 
appendix. 

Similarly, the non-linear boundary condition, equation (9, may be linearized 
yielding 

U:+'(~AU;+ C) +u:+ ' (~Bu:+D)-A(u~  -B(u:)~+E = 0, (16) 

where A, B, C, D and E have been previously defined. 

4. The finite difference scheme 

The appearance of u8, in equation (15) necessitates the use of a nine-point molecule as 
the simplest finite difference structure that may be used (see, for example Ames 1965). 
The natural geometry of the problem lends itself well to the use of a polar grid, 
especially as the boundary lies on a constant 8 circle. Also, the symmetry about the Ox 
axis reduces the grid boundary from circular to semicircular thus halving the number of 
equations to be solved. The finite difference structure is illustrated in figure 2. 

Application of Taylor's theorem enables the following approximations to be derived 
for the various derivatives at the point (i, j )  : 

where 88 and 84 are the incremental angles between adjacent points. 
By substituting the expressions in equations (17) for the derivatives in equation 

(15), a nine-term linear difference equation in ui,j results for all interior points 
(i = 2 . .  . ima-1 , j=2 . .  .jma,-l). For the points (i = 2 . .  . ima-l , j= 1 andim=) the 
symmetry condition (6) is linked to (15), thus simplifying it, in that U, = 0 and hence 
U,, = 0. Also, because of the symmetry, terms in the finite difference form of U@ 
(equation (17)) that lie outside the grid are replaced by their image points. Thus, 

For the points (i = i,,, j = 2 , . . jmax), the linearized boundary condition, equation 
(16), has to be satisfied. U, may still be approximated by the form given in (17) but us 

ui,jmax+l = ui,jmul-l* 
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FFgure 2. Finite difference scheme. 

must now be represented by the backward difference formula 

The mapping directive equation (equation (7)) is applied at (i = i,,,, j = 1). The grid 
point at i = 1 lies at a singularity in the coordinate system and hence the derivatives in 4 
are undefined at this point. However, difficulties are resolved by noting that (2) 
depends only on the derivatives of U, and not on U itself, hence an arbitrary constant 
may be added to any solution and the equation will still be satisfied. It is necessary 
therefore to assign a particular value to U at any one point on the grid and thus (8) sets 
ml,,, the centre point, to zero. 

The problem is reduced to solving a system of (i,,- 1) xj,, independent linear 
equations in mi,, (i = 2 . . . i,,, j = 1 . , . jmax), and may be solved by well known matrix 
methods. 

In practice a modification has to be made to the scheme in order to overcome minor 
discontinuities that arise in the computed reflector surfaces. These occur at, and close 
to, the point on the surface that corresponds to the far-field pole at 0 = 0, and arise from 
the fact that surrounding points, although geometrically close, have relatively loose 
‘ties’ with each other in the solution matrix. Errors introduced by the discretization 
process tend to produce differing effects on each of these elements and thus discon- 
tinuities are caused. 

In order to overcome this effect stronger ‘ties’ may be made by explicitly incorporat- 
ing the identities: 

which, due to the symmetry of the problem, may be written as 
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Approximating the derivatives by three-term forward difference formulae these equa- 
tions break down to the following difference form: 

j = (jmax- 1)/2+ 1. 

The relationship ul j  = 0 has been used in deriving these equations. 
Since the problem is now over-specified the condition of equation (15) for the points 

(i = 2, j = 1 . . . jmS) is removed. The central region is now no longer required to satisfy 
the differential equation and thus the resultant values of D ( e , d )  is this region will tend 
to vary to some extent from the required values. Variations of up to * 10% have been 
typically encountered. However, if a better approximation to D(0 ,d )  is required in this 
central region slight perturbations to the computed value of K in (4) can significantly 
reduce the error. Generally K need be varied by only about *l%. 

5. Computed results 

The resulting sets of linear equations were solved on a CDC7600 computer using 
subroutines from the Nottingham Algorithms Group (NAG) FORTRAN Library 
(1973). Essentially a sparse matrix A is decomposed into triangles A =  LU where L is 
lower triangular and U is upper triangle. An attempt is made to maintain sparsity whilst 
controlling round-off errors. An approximate solution to the equation Ax = b is then 
found by a forward and backward substitution. 

A number of successful computations have been performed using a variety of 
far-field models, but discussion iii this paper is limited to the solution of reflection 
surfaces for two particular far-fields, models I and 11. A 154-point scheme gave 
satisfactory results in both cases, since U was found to vary slowly over the integration 
domain. Typically maximum and minimum values of U for these models lie between 
0.2 and -0.01 respectively. 

5.1. Model I 

g(e, 4) = exp[sin2(38)(u sin2+ + v cos2+ + w cos +)I; o G e 6 300 (18) 

where U = -2.996, U = -3.454, w = 1.151. U, U and w were chosen so that the power 
density at the edge of the defined field varied between 10 and 20 dB below the peak 
value at 8 = 0. 

This function is represented in equi-power contours in figure 3. Several computa- 
tions were made using this function, varying e:, the half-angle of the required reflector, 
and the feed tilt angle, I). 

Solutions for both the ‘top-to-top’ and ‘top-to-bottom’ cases were obtained. For 
runs with I) = 0 an initial guess was made for (+ that would yield a reflector giving a 
uniform power density over the defined far-field. The equations are then 4 indepen- 
dent and hence partial derivatives with respect to q5 are zero throughout the region 
bounded by 8 = Of. For this initial guess, CT may be obtained by considering only energy 
conservation (equation (4)) and the non-linear boundary condition, as given in equation 
(5 ) .  Due to the 4 independence of this simplified problem, energy considerations alone 
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Figure 3. Model I. 

define the relationship 8' = 8' (8) ,  0 c 8 s Of. Hence, by replacing Of with 8, and 8: with 
e', equation (5 )  may be solved directly to yield a(8). 

Performing the integration in (4) under the limits (0,O) the following relationship 
between 8' and 8 is obtained: 

1 +COS 8' =A& -COS e), 
where AO=(1+cos8~)/(1-cos8~).  Since ( T ~  = O  and $ = O  equation ( 5 )  may be 
simplified to: 

(cos e'--cos e ) (~; -2  sin 8ae+cos e'-cos 8 =o, (19) 

where the boundary values, 8: and df, have been replaced by the general points 8' and 8. 
Equation (19) is quadratic in 0 6  and hence 

which may be solved numerically to yield (T. The upper sign in (20) applies to the 'top- 
to-bottom' mapping and the lower sign to the 'top-to-top'. 

Using this initial approximation for (T with the far-field given by (18), convergence 
to a stable solution for reflectors with an included angle of up to 160" was obtained in 
about 5 iterations. 

When a feed tilt was introduced to avoid feed blockage, it was found necessary to 
increase i+b in steps of about 10" using the solution for 4-  10" as the initial approxima- 
tion. Attempts at larger jumps in qj resulted in the method becoming unstable. Figure 4 
illustrates a cross section of the reflector surface by a cut in the 4' = 0,180" plane for the 
case JI = 0. The solutions for both the top-to-top and the top-to-bottom variants are 
shown together with the resulting edge rays. Figure 5 shows the same cut through the 
surface but the design feed tilt angle has been changed to $ = 40". From the ray diagram 
it is seen that for this value of $, feed blockage is completely removed. 
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/ 
Figure 4. Showing the two possible solutions in the 
elliptic case. 

Figure 5. Reflector surface with zero feed blockage. 
Reflected rays lie in equal increments of 8. 

5.2. Model I. 

where a, = 0.239 and bo = 0.236 which essentially results in a (coset)* shaping in 
y =constant planes and a cosine shaping in x = constant planes. An equi-power 
contour diagram for this function is given in figure 6. Again a satisfactory initial 
approximation was found to be the uniform far-fieid case and convergence was 
obtained in 5 iterations. Figure 7 illustrates the reflector surface obtained for the $ = 0 
case at cuts of 4' = 0, 180" and 4' = 90", 270". No difficulty was experienced when $ 
was increased to remove feed blockage. 

FFgure 6. Model 11. 
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Figure 7. Model I1 reflector 

6. Conclusions 

A method based on new design equations derived under the geometrical optics 
approximation has been presented for the computation of reflector surfaces that 
produce a given far-field radiation pattern, specified as a function of two variables. The 
primary feed has been assumed to behave as a point source, having an isotropic 
radiation pattern over the solid angle subtended by the reflector. Examples have been 
given illustrating two distinct classes of reflectors that may be obtained, which depend 
on the required mapping of the edge rays. It is also shown that the source may be 
positioned such that it does not lie in the path of reflected rays so that feed blockage is 
removed. A future paper will present a modification of the method of solution which 
will enable a primary source with a tapered illumination pattern to be used. The 
low-edge illumination of the reflector that is possible by using such a feed will enhance 
the practical beam shape compared to the isotropic feed, by lowering both the expected 
diffraction ripple across the beam and the sidelobe structure. Use of a conical scalar 
feed horn as the primary source, with its inherently low integrated cancellation ratio will 
make the technique highly suitable for applications that require good circular polariza- 
tion performance. 

Appendix 



where s = [ 1 + ( a ~ ) 2 f ( a ~ / s i n ~ ) 2 ] D  and t =(cr:-cot B)(o:-2cot e). 
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